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The basic Electronically Controlled Acoustic Shadow (ECAS) model in
Paper I [1] (Wright and Vuksanovic 1996 Journal of Sound and Vibration 190,
565±585), considered the sound cancellation from a ¯at (2D), in-phase primary
source, radiating in free ®eld (no re¯ecting surfaces) and in a stationary
propagating ¯uid (no wind), using monopole (omnidirection) cancellers. In
Paper II [2] (Wright and Vuksanovic 1997 Journal of Sound and Vibration 202,
313±359), the theory was extended to high frequency non-compact acoustic
sources, where the acoustic wavelength is small compared to the source size.
Paper III [3] (Wright and Vuksanovic 1999 Journal of Sound and Vibration,
220, 469±496) considered the implementation of ECAS theory into practice.
This paper considers the following practical extensions to the basic ECAS
model: (a) out-of-phase primary sources; (b) three-dimensional primary sources;
(c) ground re¯ection; (d) directional secondary sources and (e) wind e�ect.

# 1999 Academic Press

1. INTRODUCTION

The detailed properties of the basic ECAS system, illustrated in Figure 1, are given
in references [1±3]. For comparison with the following model extensions, the unit
shadow a=b=15� is used. Here the sound is generated by a square, in-phase
primary source plane, of dimensionsD=2 m and total source strengthQp=1 m3/
s. Point sources used in the primary array are identical and equispaced, with
strengths qp=Qp/p, where p is the number of sources in the array; i.e., for p=16,
qp=1/16 m3/s=0�063 m3/s. An array of 363 secondary (cancelling) sources lie in
a plane, with the sources separated from each other by d=1 m; the distance of this
plane from the primary source plane is rs= l/2=1�715 m for 100 Hz and l/
2=0�429 m for 400 Hz source frequency. l is the acoustic wavelength.
A corresponding 363 microphone array is situated at rm=50 m from the

primary source, within the 15615� control angles. Figures 2(a) and (b) show the
uncancelled (dotted line) and cancelled (full line) 60�6360� observer strip,
situated at an observer distance of r0=50 m around the source. These ®gures
are computed for a 100-Hz, compact primary source (dimensions D> l) and for
a 400-Hz non-compact source (D> l). Note that the 400-Hz source is
approximately four times (12 dB) higher than the 100-Hz source for the same
source strength.
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Equations (1) predict the average shadow depth for the 15615� unit shadow, for
an observer4microphone4 secondary source distance from the primary source;
the shadow depth for a compact source is given by the ®rst equation and for a non-
compact source by the second equation; here n is 10, 13 and 16 for primary±
secondary source plane separation distances rs of 2l, l/2 and l/8 respectively:

dB � 10n log�l=d�, D < l; dB � n log 2�l=d�, D > l: �1�
As the shadow depth in dB and the shadow angle in degrees are approximately
linear with the number of channels, the channel number for larger shadows can be
estimated by the addition of these 15615� unit shadows. The theory thus predicts
deep shadows for large sources at low frequencies, or small sources at high
frequencies; or large shadow angles for compact sources, or small shadow angles
for non-compact sources, for the same channel number. For example, if l/d=2
and n=13, the shadow depth would be 139 dB for D< l. If the source frequency
f=100 Hz, l=3�4 m, and d=1�7 m, then if D� 3�4 m, the number of secondary
cancellers per source dimension N1 (D/d+1)1 3 or 9 for a square source over
15�615�, or 15 cancellers over 15�630�.

2. OUT-OF-PHASE PRIMARY SOURCES

The primary source in the basic ANC model was treated as a two-dimensional
array of point sources, vibrating in phase and with the same amplitude and
frequency. In the case of real primary systems, this model is an over-simpli®cation.
Mechanical structures will have higher order modes. It is important to establish
the effect on shadow depth from these higher order modes compared with the
simple in-phase sources. These modes can be obtained by solving the wave
equation for the primary structure with appropriately chosen boundary
conditions. A two-dimensional version of the wave equation, where y= y(x, z, t)
represents the transverse displacement of a ¯at structure, can be expressed as

���� 0°

°

°
Primary
sources

Secondary
sources Microphones

Figure 1. Electronically Controlled Acoustic Shadow (ECAS) system.
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@2y=@x2 � @2y=@z2 � �1=c2�@2y=@t2: �2�
The well known solution of this wave equation, given for example, in reference [4],
upon neglecting the time variation factor is

y�x, z� � A sin kxx sin kzz, �3�

kx � np=wp, n � 1, 2, 3, . . . , kz � mp=bp, m � 1, 2, 3, . . . : �3a, b�

Figure 2(a) Caption overleaf
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Here w and b are the width and breadth of the plate. The ®rst order mode and a

few of the higher order modes, given by equations (3), are shown in Figure 3. Each

of the modes is denoted by an index (n, m). The modes are simulated,

approximately, by point sources; the positive sources are denoted by open circles

and the negative sources (out of phase by 180�) by ®lled circles.

Figure 4 shows the intricate beauty of the sound pressure contours in dB, of a

260� elevation by2180� azimuth observer strip situated at 50 maround the source.

System parameters:  P=12   12,  S=M=3   3,  

f=400 Hz,    =0.858 m, rs=0.43 m  (  /2),  

rM=r0=50 m,    /D=0.429,   /D=0.858;  

shadow angles:    sh=15° (azimuth),

  sh=15° (elevation)
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Figure 2. (a) 15615� unit shadow, f=100 Hz. (b) 15615� unit shadow, f=400 Hz.
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Various vibration modes, from a 2-m square source radiating at 100 and 400 Hz
source frequencies are considered. The individual strength of each point source is set
atqp=1/p m3/s (wherep=16is thenumberof sources in theprimaryarray).
Mode (a) in Figure 4(a) is basically the directivity of a marginally compact

monopole source for an acoustic frequency f=100 Hz (l/D=1�7). It has a
maximum radiation at the front (0�) and back (180�) of the source, and slightly
reduced radiation in the plane of the source (90�), through destructive
interference across the source. Mode (b) is equivalent to a lateral dipole having
minimum radiation at 0� and 180� azimuth. Modes (c) and (d) are basically

M

M

M

M

(a)  mode (1,1)

(b)  mode (1,2)

(c)  mode (2,2)

(d)  mode (4,4)

Figure 3. Some of the normal vibration modes of the primary sound source.
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Figure 4. (a) Radiation characteristics of vibration modes, f=100 Hz. (b) Radiation character-
istics of vibration modes, f=400 Hz.
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lateral quadrupole directivities with minimum radiation at 0� and 180� azimuth.
and 0�, 180� elevation angles. In Figure 4(b) modes (a) to (d) give similar
multipole directivities for f=400 Hz, showing the additional complex
interference, through source non-compactness (l/D=0�429).
As to the shadow generation from these modes, Figure 5±8 show the

uncancelled (dotted line) and cancelled ®elds for modes 2,2 and 4,4 for 15615�

and 30615� shadows at 100 and 400 Hz. Note that the radiation of the
uncancelled out-of-phase sound at low frequencies is 170 dB compared with the
in-phase source level at 195 dB, shown in Figure 2(a), a difference of 25 dB.
At 100 Hz, shown in Figures 5 and 6, the shadow depth for mode 2,2 (and

mode 4,4 not shown), is approximately 50 dB (75ÿ 25) compared to 075 dB
(95ÿ 20) for the in-phase source mode, given in Figure 2(a)Ða loss of shadow
depth of 025 dB. At 400 Hz, shown in Figures 7 and 8, both mode 2,2 and
mode 4,4 give 030 dB (95ÿ 65) shadows, compared with 050 dB (105ÿ 55),
for the in-phase source in Figure 2(b)Ða loss of 020 dB.
In summary, it can be seen that there is aproximately 25 and 20 dB shadow

loss for compact and non-compact out-of-phase sources, respectively, compared
with the in-phase case. Although the radiation ®elds from the higher order
modes are complex, having wave fronts with phase reversals, deep shadows are
still formed across them.

3. THREE-DIMENSIONAL PRIMARY SOURCES

A second extension to the simple 2D ¯at primary source of the basic ECAS
model is the effect of source depth. Three primary source con®gurations
considered are (a) front and top surface, Figures 9 and 11, (b) front and side,
Figures 10 and 12, and (c) a corner (not shown) of a 2-m cube, for 100 and
400 Hz source frequencies. The number of primary sources used in constructing
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Figure 5. 15615� shadow for out-of-phase primary source, f=100 Hz, mode (2,2).
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the 3D primary sources is 565 for each source face with corner sources common
to both faces, a total source strength of 1 m3/s, giving 1/45 m3/s for each of the
(565)+ (564)=45 sources.
It can be seen that the basic effect of a 3D source compared with a 2D source,

as to be expected, is to produce a more spherical-like radiation directivity: i.e., to
increase the side radiation facing the additional surface, where the radiation
from a 2D ¯at surface is reduced for a non-compact source. At low frequencies,
the compactness is reduced with the extra dimension, reducing the shadow from
075 to 050 dB (25 dB reduction). At high frequencies, the source is already
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Figure 6. 30615� shadow for out-of-phase primary source, f=100 Hz, mode (2,2).
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Figure 7. 30615� shadow for out-of-phase primary source, f=400 Hz, mode (2,2).
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substantially non-compact and the shadow depth is only marginally reduced
with the extra dimension, reducing from 50 to 40 dB (10 dB reduction). A corner
situation tends to give slightly larger shadow losses.

4. GROUND REFLECTION

A third extension to the basic free ®eld radiation model is the effect of
re¯ecting surfaces, particularly ground re¯ection. The complex sound pressure
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Figure 8. 30615� shadow for out-of-phase primary source, f=400 Hz, mode (4,4).
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p(r) in Pascals at some distance r from a single, monopole point sound source S,
upon neglecting the harmonic time varing term exp( jot), can be calculated by
using the equation

p�r� � cp�r�q, �4�
where the propagation coef®cient cp(r) is

cp�r� � � jor0=4pr� eÿjkr, �5�
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where o=2pf is the angular frequency of the source in rad/s, r0 is the density of
the propagating medium (kg/m3), q is the complex source strength (m3/s) and k
is the wave number (o/c) where c is the speed of sound.
In the case of a re¯ective ground surface, sound at the microphone position M

will be the sum of the direct and re¯ected sound. The surface can be replaced by
a ``mirror image'' of point sources of appropriate strength (taking into account
the ground re¯ectivity), positioned at S 0 as shown in Figure 13. In the case of a
100% re¯ective surface, using a modi®ed form of equation (4), the complex
sound pressure at point M can be calculated as

p�r� � �cp�r� � cp�r 0��q: �6�
In a more realistic case of a surface which absorbs partly the sound from a
source (grass or some other absorbing material) the above equation can be
changed by using an absorption factor a:

p�r� � �cp�r� � acp�r 0��q: �7�
The re¯ecting surface can also in some cases introduce a change in phase
between the incident and re¯ected sound. Equation (6) can also be changed to
accommodate this phase. For 90� phase shift one has

p�r� � �cp�r� � iacp�r 0��q, �8�
where i= (ÿ1)1/2.
With reference to Figure 14, the sound at each microphone, from the

microphone array, can be expressed by using the matrix equation

Pm � �Cm � Cm 0 �Qp, �9�
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where Pm represents the m-dimensional vector of complex sound pressures at
each microphone from the array (m is number of microphones in the
microphone array), Qp is the p-dimensional vector of complex source strengths
(p is the number of point primary sources in the array) and Cm , Cm 0 are
matrices of propagation coef®cients between each point source from real and
image arrays, respectively, to each microphone array (dimensions of these
matrices are m6p).
Due to the ``mirroring effect'' of the ground plane, the order of particular

columns in the matrix Cm is reversed. For the case of 363 source and
microphone arrangement in space, the matrix Cm 0 is

Cm 0 �

c0�6 0 c0�7 0 c0�8 0 c0�3 0 c0�4 0 c0�5 0 c0�0 0 c0�1 0 c0�2 0
c0�6 0 � � � � � � � �
c2�6 0 � �
c3�6 0 � �
c4�6 0 � �
� � �
� � �
� � �

c8�6 0 c8�7 0 c8�8 0 � � � � � c8�8 0

26666666666664

37777777777775
: �10�

Figures 15±18 give the results for a 262 m square primary source situated 1 m
above the ground at a microphone distance of 50 m. Two cases of ground
condition are considered: (a) 100% re¯ecting surface similar to a hard solid
surface such as concrete, and (b) 50% re¯ecting surface with 90� phase change at
the surface representing softer porous surfaces. The ®gures are computed for 100
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Figure 13. Geometry of sound source, ground re¯ection image and microphone.
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and 400 Hz source frequencies. Because of the ground plane, negative elevation
angles (ÿ0� to ÿ30�) are physically not accessible.
For 100% ground re¯ection the maximum radiation, as is to be expected, is

increased nearly twofold, from 095 to 99 dB compared with the free ®eld case
at f=100 Hz (Figure 2(a)). At higher frequencies, non-compact source case,
f=400 Hz, the effect of the ground is to produce additional horizontal
interference ridges (maxima and minima in elevation, vertical axis), compared to
the free®eld case, because the source is now effectively twice as high (real source
plus image).
Although the directivities exhibit some change, it can be seen that for the

particular geometry and frequencies used, the shadow depths (75 dB at 100 Hz
and 45 dB at 400 Hz) are little affected by ground re¯ection. Although the
re¯ected primary source is now effectively twice its free ®eld size, the cancellers
are also effectively twice as many. The net effect can be considered as a cancelled
re¯ected shadow, not much different than the free®eld version.

5. DIRECTIONAL SECONDARY SOURCES

A fourth simpli®cation used in the basic ECAS model was to use monopole
cancelling secondary sources. These sources radiate equally in all directions
(omnidirectional). More realistic sources tend to be directional.
The previous sections have described the properties of monopole secondary

sources which redistribute acoustic energy within control angles from the
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Figure 14. Array of point sound sources, images and microphones.
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primary source. Increases in sound outside these control angles can also be
generated. This is because the monopole radiation is omnidirectional and
uncoordinated there. A method of reducing this side radiation, and also
radiation to the rear, is to use directional multiples.
The dipole, for example, has a ®gure of eight directivity: i.e., radiating equally,

but out of phase, to the front and rear of its axis, but not radiating directly to
the sides. A tripole (dipole plus monopole) has a heart shaped directivity along
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its axis, radiating a maximum in front and progressively less moving to the rear.
This has an important net forward energy propagating characteristic which can
be used to represent a Huygens' propagating wave front. Tripoles, in principle,
can thus be used to cancel (absorb) another propagating wave moving in the
same direction without redirecting the energy (re¯ection).
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5.1. BASIC MONOPOLE

The ideal point monopole source is usually explained using the concept of a
pulsating sphere which radiates sound equally in all directions, from equations
(4) and (5) one has

p�r� � jor0q eÿjkr=4p, �11�
where the quantities are de®ned after equation (5).

5.2. DIPOLE

The dipole source can be formed using two monopole sources, as illustrated in
Figure 19, with strengths q1 and q2 of equal magnitude and opposite phase, and
propagating distances r1 and r2, respectively, such that

p�r, y� � jor0q
4p

eÿjkr1

r1
ÿ eÿjkr2

r2

� �
: �12�

If the separation distance between the sources is d, then in the far ®eld (kr4 1),
r4 l/2p, the approximation r11 r21 r can be made in the denominator and
r1 � rÿ �d=2� cos y, r2 � r� �d=2� cos y in the numerator. For a compact dipole
source (kd< 1) d< l/2p, equation (12) becomes, upon using
eix ÿ eÿix � 2j sinx1jkd cos y,

p�r, y� � jor0q
4pr

eÿjkr�ejkd cos y=2 ÿ eÿjkd cos y=2� � ÿor0q
4pr

eÿjkrkd cos y: �13, 14�

Or retaining near ®eld terms (kr< 1) this becomes

pd � ÿ jor0q
4pr

eÿjkrkd�cos y��1� 1=jkr� : �15�

i.e., the maximum dipole strength is a factor kd weaker than the monopole
strength in the far ®eld (kr4 1).

5.3. TRIPOLE

Adding one more monopole source at the centre of this dipole con®guration,
creates a tripole source, as shown in Figure 19. The strength qc of this third
monopole can be chosen to provide a minimum sound in the far ®eld (kr4 1) to
the left of the source combination: for example, making p(r)1 0 for x4 0. Since
this pressure tends to zero, qc can be found by solving the equation

p�r� � jor0
4p

qeÿjk�r�d=2�

r� d=2
ÿ qeÿjk�rÿd=2�

rÿ d=2
� qce

ÿjkr

r

� �
� 0: �16�

Upon neglecting differences in the denominators, which is an acceptable
approximation when working in the far®eld region, the solution for qc becomes

qc � q�ejkd=2 ÿ eÿjkd=2� � j2q sin�kd=2�: �17�
Again, for a compact tripole source (kd< 1) qc1 jqkd, and for angles away from



652 S. E. WRIGHT AND B. VUKSANOVIC

the x-axis substituting for r1= rÿ (d/2) cos y, and r2= r+(d/2) cos y, equation
(16) in the far ®eld (kr4 1), after some mathematical manipulation, simpli®es to

p � ÿor0qe
ÿjkr

4pr
kdfcos y� 1g: �18�

The cos y term which has a dipole directivity, and the unity term which has a
monopole directivity, together produce the tripole directivity.

5.4. PHASE CONTROLLED MULTIPOLES

The classical multipole sources considered above have a ®xed phase between
them, usually 180�. If the phase is adjusted with position and/or frequency, more
ef®cient multipoles can result.

5.5. REFLECTING DIPOLE (TRIPOLE±DIPOLE)

Consider the far®eld sound (x4 d), right of two monopole sources labelled 1
and 2 shown in Figure 20. For simplicity the analysis is carried out in one
dimension along the x-axis. Generally for off-axis sound, the on-axis distances
will be modi®ed by cos y, where y is the angle made with the x-axis. Further, the
distance x in the denominator is considered to be similar for both poles, as in the
far ®eld. In this case the sound for x4 d becomes

px>d � p1 � p2 � �jor0=4px��q1eÿjkx � q2e
ÿjk�xÿd��: �19�

By adjusting the phase of source 2 with separation distance d from source 1
according to

q2 � ÿq1eÿjkd, �20�
the sound propagating to the right of source 2 will cancel: i.e.,

px>d � p1 � p210: �21�
The sound propagating to the left of sources 2 (0< x< d) will now be equal to
the sound propagating to the right of source 1, and thus p2= p1 (x> 0): i.e.,

y

x

O

C

d

–q q

r2 r1r

Figure 19. Classical multipole sources.
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source 2 acts not as a radiator but as a re¯ector, re¯ecting the sound from
source 1 back to itself. The sound to the left of source 1 (x4 0), where x in the
exponentials remains negative in the direction of propagation, is then

px<0 � p1 � p2 � �jor0=4px��q1eÿjkx � q2e
ÿjk�x�d��: �22�

Using equation (20), one has

px<0 � �jor0=4px�q1eÿjkx�1ÿ eÿj2kd� � �jor0=4px�q1eÿjk�x�d��ejkd ÿ eÿjkd�

� �ÿor0=4px�q1eÿjk�x�d�2 sin�kd�: �23�
Equation (23) gives the sound pressure, on-axis, to the left of the source
combination. The sound to the right, in reality, will not be exactly zero. Its value
will depend on the separation distance d between the sources. Its directivity is
therefore that of a simulated tripole, as computed in Figure 21. The source
strength q used in the computations is 1 m3/s; the units in the ®gure are dBs and
meters. This form of re¯ective dipole has the following properties: (a) a source
strength of twice the monopole strength with maxima to the left when
sin(kd)=1, kd= p/2, d= l/4; (b) a much stronger source strength than the
classical multipole, where the kdq direct multiplier source strength term in the
classical multipole reduces the radiation, proportionally, for kd< 1: for example
in the dipole equation (14) and the tripole equation (18); (c) the minima on the
x-axis to the right (x4 d) depends on the difference between the reciprocal
distances from the monopole sources to the observer,

1=xÿ 1=�x� d� � d=x�x� d�1�d=x�1=x : �24�
i.e., the inverse distance 1/x (spherical spreading) is modi®ed by an additional (d/
x) term, giving the minimum cancellation depth in dB as

dB � ÿ20 log�x=d�; �25�
thus the minima to maxima multipole value increases with distance from the
source.

y

x–x

d L

1 2 3

x=0 x=d x=d+L

Figure 20. Phase controlled sources.
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5.6. REFLECTING DIPOLE (RESONANT-DIPOLE)

For the special case of kd= np, or d= n(l/2) where n is an integer, then
Px<0� 0, i.e., the sound to the left of the source combination will also cancel.
Thus source 1 now acts as a re¯ector; the sound therefore re¯ects back and forth
between sources 1 and 2, similar to a laser action. In this situation the tripole
directivity is transformed into a dipole-like directivity. Here both sources are
trying to cancel each other, producing a sharper elongated dipole directivity than
the classical dipole, as shown in Figure 22. Note the minima along the dipole
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axis are ®nite, have ®nite (wider) angle widths (not singularities as in the classical
dipole case) and they are orthogonal to those of the classical dipole. Figure 23
shows a non-compact (d> l) resonant dipole computed for n=4, d=2l, which
exhibits additional complex acoustic interference.

5.7. ABSORBING TRIPOLE

If now a third source 3 is introduced to the right of source 2 and separated by
a distance L (x= d+L), as illustrated in Figure 20, then the sound propagating
to the left of source 1 (x5 0) will become

px<0 � p1 � p2 � p3 � �jor0=4px��q1eÿjk�x�d�2j sin�kd� � q3e
ÿjk�x�L�d��: �26�

If q3 is adjusted now according to

q3 � ÿq1ejkL2j sin�kd�, �27�
then the sound propagating to the left of source 1 will cancel, i.e., Px<0� 0.
Here, fascinatingly, the source pair 1 and 2 now absorb the sound from the left
side of source 3 resulting in an absorbing form of tripole source.
As p2=ÿp1 on the right side of sources 1 and 2 (from equation (21)), the

sound to the right of source 3 (x> d+L), is given now by P3 only: i.e.,

Px>d�L � P3 � �jor0=4px�q3eÿjk�xÿ�d�L��: �28�
Substituting q3 from equation (27) into equation (28) ®nally gives the sound
pressure for the absorbing tripole as

Px>d�L � �or0=4px�q1eÿjk�xÿ�d�2L��2 sin�kd�: �29�
This equation is identical to equation (23) for the re¯ecting dipole, apart from
the minus sign and the additional exponential phase terms. These additional
directional terms can be used to modify the directivity off-axis. However, the
dominant term on-axis to the right of the three-source combination is sin(kd),
giving properties similar to those of the re¯ecting dipole, except the maxima and
minima are interchanged. Figure 24 shows the absorbing tripole form for
d= n(l/4), for n=1, and L= l/4.
The dipole form of the three-source combination occurs for d= n(l/2), where

the radiation on-axis and in the far ®eld, is now independent of the value of L,
for integer values of n, as q3=0. This form is therefore equivalent to the
re¯ecting resonant dipole directivity shown in Figure 22. Figure 25 shows the
``almost'' dipole form, for a close integer of n (n1 2) d=1�6 (d1 l/2). Here the
radiation is now dependent on L. Additional poles can be added ad in®nitum,
producing a whole family of directivities.
These multipole sources make an interesting array of directional sources for

focused sound cancellation systems, if needed. Further background information
regarding multipole sources can be found for example in references [5±7].
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6. CANCELLING SYSTEMS

To return now to cancelling systems, the propagation elements of the matrices
in the general case given by equation (9) contain transfer coef®cients between
each point secondary source and each microphone in the sensor area. These will
be, for example, the monopole

csm � or0e
ÿjkrs,m=4prs,m, �30�
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csm � jor0
4p

eÿjkrs,m

r1s,m
ÿ eÿjkrs,m

r2s,m

� �
, �31�

or, upon using its approximate compact (kd< 1) and far ®eld (kr4 1),
equivalent (r1s,m 1 r2s,m 1 rs,m)

csm � ÿor0e
ÿjkrs,m

4prs,m
�kd cos y� 1� 1

jkrs,m

� �
: �32�
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For the tripole

csm � jor0
4P

eÿjkrs,m

r1s,m
ÿ eÿjkrs,m

r2s,m
� K

eÿjkrs,m

rs,m

� �
, �33�

where K=j2 sin(kd/2), or, upon using the approximate compact far®eld form,

csm � �ÿor0=4prsm�eÿjkrkd�cos y� 1�: �34�
Incidentally, when working in a three-dimensional co-ordinate system the
kd cos y part of the expression must be expanded to kd cos y cos j to include
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the in¯uence of the elevation angle between each secondary source and
microphone. These dipole and tripole secondary source system arrangements are
shown in Figures 26 and 27. The exact equations (31) and (33) were used in the
directional source computations, although the approximate equations (32) and
(34) give almost identical results.

6.1. COMPUTED RESULTS

The ®rst set of plots, Figure 28, represent the sound ®eld in dB radiated
normal to a wall of secondary sources only (no primary source present)
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calculated and plotted for the part of the plane z=0 (60660 m). Three different
types of sources are, for example, simulated classical monopole (a), dipole (b)
and tripole (c).
The 262 m square wall of secondary sources is created by using nine ideal,

point monopole sources in a 363 arrangement. The dipole and tripole
secondary source types for cases (b) and (c) are then created according to
equations (31) and (33), as previously described, by adding one and two more
layers of monopole sources. Separating distance between dipole layers is set to
d=0�1 m.
According to equations (11), (15) and (18), the maximum effective source

strengths are in successive order q, kdq, and 2kdq. The elliptical shape of the
contours, in the case of the 2D monopole source, is caused by marginal
compactness of the 2-m square source, l/D=1�7 (D=2 m, f=100 Hz). The
other two plots for the classical dipole and tripole directivities, are for the same
compactness factor.
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Figure 26. Secondary dipole source con®guration.
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Figure 27. Secondary tripole source con®guration.
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Figure 29 shows the computed shadows for the monopole (b), dipole (c)
and tripole (d) secondary sources compared with the uncancelled ®eld (a). The
plots show 606360� observer strips at an observer distance of r0=50 m, for
100 and 400 Hz. In the case of the dipole secondary source, it can be seen
that it is possible to reduce the increases in side radiation produced with the
monopole source. The drawback is increased radiation behind the primary
source.
Use of the tripole source, as expected, does not increase the radiation behind

the primary source. Radiation immediately each side of the shadow (at high
frequencies and for small shadow angles) is not reduced, but of course reduces
progressively as the shadow angle increases towards 90�. Monopole and dipole
source con®gurations with speci®c primary source±secondary source spacing
(rs= l/2, for example) can also reduce the sound pressure behind the primary
source, as well as in the shadow region.
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Figure 28. dB contours in xy plane (z=0), generated by a wall of classical multipole sources:
(a) monopole; (b) dipole; (c) tripole.
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The obvious example of a classical tripole type source is a loudspeaker backed
by an absorbent enclosure behind, providing that the loudspeaker dimensions
are small enough in comparison with the sound wavelength. The dipole source
type can be realized by removing the backing enclosure of the loudspeaker since
the sound produced in front of the loudspeaker and on the back are 180� out of
phase. One of the practical problems with these kind of conventional multipole
sources is their reduced source strength (kd) for the same q. Phased controlled
multipole sources, which have been explored in section 5, seem to offer a better
prospect for practical directional sound sources. These sources need to be
investigated further.

7. WIND EFFECT

A ®fth modi®cation to the basically static ECAS model, is the effect of wind:
i.e., the propagating ¯uid convecting across the stationary ECAS system.
Consider an acoustic wave propagating along a ray in a propagating ¯uid,

again neglecting the harmonic time modulation term exp(jot). The sound
pressure at any point along the ray at a distance x from the sound source
(positioned at x=0) can be calculated from the solution of the one-dimensional
wave equation as
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Figure 29. Multipole secondary source cancellationÐaveraged plotsÐsummary, r0=50 m: (a)
uncancelled; (b) monopole; (c) dipole; (d) tripole.
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p�x� � jorqeÿjkx=4px, k � o=c: �35�
The symbols are the same as those de®ned after equation (5).
In the early days, there appeared to be confusion regarding the development

of the convected wave equation. The initial work in this area was in the
development of the ``convected'' electromagnetic wave equation (space travel,
Einstein et al.). The confusion resulted from trying to derive the acoustic
equation from the electromagnetic one, where of course there is no propagating
medium, in the classical sense. Providing it is kept in mind that equation (35)
describes the fundamental wave propagation physics of sound propagation with
respect to a propagating medium, then there is no confusion.
The effect of wind (sound propagation in the propagating medium moving

with a speed u 0 with respect to a stationary reference frameÐground), can be
found now by modifying the quantities in equation (35) by those observed from
the ground frame. All symbols in the moving frame, where the actual wave
propagation occurs with respect to that frame, will be plain. All symbols in the
stationary ground frame, where the apparent wave propagation is being
observed, will be denoted by a superscript. Thus, the new speed of sound c 0 with
respect to the stationary co-ordinate axis x 0, can now be obtained by using a
simple vector superposition principle. Adding the two vectorsÐwind speed
velocity u 0 with respect to the ground and the sound propagation velocity in the
medium c, gives the new sound velocity c 0 with respect to the ground as

c 0 � c� u 0 for the same direction of both velocity vectors
c 0 � cÿ u 0 for the opposite direction of sound and wind speed

� �
: �36�

Generally

c 0 � c�12u 0=c� � c�12M 0�, �37�
where M 0 is the Mach number,

M 0 � u 0=c: �38�
Now x in equation (35) is the actual propagation distance in the propagating
¯uid; it is used to describe waves propagating with velocity c, to P, in the
propagation time tp=x/c. x 0 is the apparent propagation distance, as measured
in the stationary frame, with waves moving to point P 0 with effective velocity c 0,
in the same propagation time tp. By the time the actual sound has propagated to
point P, P has moved on a distance d 0 to coincide with P 0, as measured in the
stationary (ground) frame, as illustrated in Figure 30.
As the propagation time in both frames is the same, then

tp � x=c � x 0=c 0, x 0 � x
c� u 0

c

� �
� x�1�M 0� �39, 40�

and

d 0 � x 0 ÿ x � x�1�M 0� ÿ x � xM 0: �41�



664 S. E. WRIGHT AND B. VUKSANOVIC

The effect of wind on the source strength q is not considered here. This effect is
considered in more detail in reference [8]. For moderate wind speeds the effect is
small.
The problem in two-dimensional space, where in general, the vectors c 0 and u 0

do not lie on the same line, requires the application of trigonometry as
illustrated in Figure 31. Here, the actual propagation distance x is replaced by r
in equation (35). This distance has to be de®ned in terms of quantities that are
measured in the stationary frame (on the ground): i.e., r 0, d 0, M 0, and a 0.
Applying the cosine rule on the triangle OPP 0 one has:

r2 � r
02 � d

02 ÿ 2r 0d 0 cos a: �42�
Generally d 0= rM 0 (two-dimensional equivalent of equation (41)) so one can
rearrange equation (42) to obtain r as

r2�1ÿM
02� � 2r 0rM 0 cos a 0 ÿ r

02 � 0: �43�
Solving for r yields:
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r �
ÿ2r 0M 0 cos a 02

�����������������������������������������������������������
�2r 0M 0 cos a 0�2 ÿ 4�1ÿM

02�
q

r
02

2�1ÿM 02� , �44�

or simply

r � r 0

1ÿM
02 �2

������������������������������
1ÿM

02 sin2 a0
p

ÿM 0 cos a0�; �45�

r � r0�����������������
1ÿM

02
p if a0 � 90�, or r � r0=1�M 0 if a0 � 0�: �46a, b�

Equation (46a), for a 0=90�, is the Lorentz transform, or the Fitzgerald
contraction, in the ``convection'' of electromagnetic waves. Equation (45) gives
the required relation between the actual propagation distance r in the moving
frame, and the apparent propagation distance r 0 in the stationary ground frame.
The sound pressure at any ®xed point on the ground can thus be calculated with
wind, by substituting r from equation (45) for x in equation (35).
Figure 32 shows the sound ®eld in dB over a 20620 m square area radiated

from a point monopole source for four different wind speeds (Mach numbers). It
illustrates sound wave compression with increasing wind speed from, left to
right, until a stationary supersonic wave front (boom) with respect to the ground
is formed, for M 0> 1. This is a trivial application, but it does validate the
developed computer modelling for more complex cases, such as-non compact
multipole source distributions with convected motion.

7.1. RESULTS

The effect on shadow performance has been simulated for wind conditions by
using equation (45) incorporated into the basic ECAS model for the standard
case shown in Figure 2. The results are summarized in Figure 33. All four ®gures
show an average SPL in dB around the source (360�) for four different wind
speeds: 50, 100, 200 and 300 m/s (using progressively lighter traces with wind
speed in the ®gure). These speeds are unrealistically high to exaggerate the effect
of wind. The wind direction was along the y-axis in the co-ordinate system
shown in Figure 31.
Figure 33(a) summarizes the acoustic shadows at a microphone and observer

distance of 50 m, with wind, but cancellers not optimized for wind condition. It
can be seen that the lightest wind ``blows away'' the acoustic shadow and
completely ruins the ANC system performance. The second set of acoustic
shadows, Figure 33(b) shows the system performance under identical wind
conditions, but now with self-optimization of the cancellers for wind conditions.
The shadows, although reduced and somewhat distorted, appear to be
adequately deep and still in place, even for excessive wind speeds. In this case the
cancellers now automatically compensate for the wind direction, producing a net
zero de¯ection of the shadow with observer distance. This is still true for an
observer at 500 m, as demonstrated in Figure 33(c). Figure 33(d) shows the
system performance at 50 m but at a higher frequency of f=400 Hz.
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These ®gures demonstrate a remarkable characteristic of ECAS systems; i.e.,
the ability of the secondary sources to adapt according to different wind speeds.
This intelligence provides deep acoustic shadows, staying on course, even under
high cross-wind and large propagation distances.

8. CONCLUSIONS

Practical extensions to the basic ECAS theory have been modelled. The results
can be summarized as follows.
(a) Out of phase primary sources deteriorate shadow performance by about 25

dB, for compact sources, and about 20 dB for non-compact sources, compared
with in-phase sources.
(b) Three-dimensional primary sources reduce the shadow performance by

about 20 dB, for compact sources, and about 10 dB for non-compact sources,
compared with two-dimensional sources.
(c) Ground re¯ection has little effect on overall shadow performance for the

particular ECAS geometry and frequencies investigated.
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Figure 32. Radiation pattern for point monopole source and four wind speeds (vari®cation of
computation): (a) M 0=0; (b) M 0=0�5; (c) M 0=0�99; (d) M 0=1�5.
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(d) Multipole directional secondary sources can absorb sound (without energy
redirection), thus reducing unnecessary radiation to the side of the shadow. A

fascinating family of phased multipole sources are identi®ed which could be used
to produce these focusing properties, if needed.
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Figure 33. Averaged unit shadow in wind conditions: (a) no cancellation with cross wind,
f=100 Hz; (b) cancellation with cross wind, f=100 Hz; (c) cancellation with cross wind, greater
observer distance (r0=500 m), f=100 Hz; (d) cancellation with cross wind conditions,
f=400 Hz.
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(e) It is found that the intelligence of the cancelling system has the remarkable
ability to compensate for the effect of cross wind on cancellation performance.
Even for strong winds the effect on shadow performance is small.
(f ) If the above effects are multiplicative (dB addition), the worst case

situation corresponds to about 55 dB shadow deterioration.
(g) Since shadow depths >120 dB are theoretically possible with ECAS

systems, practical shadows >20 dB should be readily achievable with practical
systems.
(h) Active noise control in unrestricted space with its progressive ®eld has the

potential to produce deep shadows over large distances.
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